
P1: GKW/UKS P2: GKW/UKS QC: GKW

CB196-FM July 31, 1999 15:48

Quantum Phase Transitions

SUBIR SACHDEV
Professor of Physics

Yale University

iii



P1: GKW/UKS P2: GKW/UKS QC: GKW

CB196-FM July 31, 1999 15:48

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http: //www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain

C© Subir Sachdev 1999

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999

Printed in the United States of America

Typefacein Times Roman 10/12.5 pt. SystemLATEX 2ε [TB]

A catalog record for this book is available from
the British Library.

Library of Congress Cataloging-in-Publication Data

Sachdev, Subir, 1961–
Quantum phase transitions / Subir Sachdev.

p. cm.
Includes bibliographical references and index.

ISBN 0-521-58254-7
1. Phase transformations (Statistical physics) 2. Quantum theory.

I. Title.
QC175. 16.P5S23 2000

530.4′14 – dc21 99-12280
CIP

ISBN 0 521 58254 7 hardback

iv



P1: GKW/UKS P2: GKW/UKS QC: GKW

CB196-FM July 31, 1999 15:48

Contents

Preface pagexi
Acknowledgments xv

Part I: Introduction 1

1 Basic Concepts 3
1.1 What Is a Quantum Phase Transition? 3
1.2 Quantum Versus Classical Phase Transitions 5
1.3 Experimental Examples 6
1.4 Theoretical Models 8

1.4.1 Quantum Ising Model 8
1.4.2 Quantum Rotor Model 10

2 The Mapping to Classical Statistical Mechanics: Single-Site Models 13
2.1 The Classical Ising Chain 13

2.1.1 The Scaling Limit 16
2.1.2 Universality 17
2.1.3 Mapping to a Quantum Model: Ising Spin in a

Transverse Field 18
2.2 The ClassicalXY Chain and an O(2) Quantum Rotor 20
2.3 The Classical Heisenberg Chain and an O(3) Quantum Rotor 26

3 Overview 28
3.1 Quantum Field Theories 30
3.2 What’s Different about Quantum Transitions? 33

Part II: Quantum Ising and Rotor Models 37

4 The Ising Chain in a Transverse Field 39
4.1 Limiting Cases atT = 0 41

4.1.1 Strong Coupling,gÀ 1 42
4.1.2 Weak Coupling,g¿ 1 45

4.2 Exact Spectrum 46
4.3 Continuum Theory and Scaling Transformations 49

vii



P1: GKW/UKS P2: GKW/UKS QC: GKW

CB196-FM July 31, 1999 15:48

viii Contents

4.4 Equal-Time Correlations of the Order Parameter 54
4.5 Finite-Temperature Crossovers 57

4.5.1 LowT on the Magnetically Ordered Side,1 > 0, T ¿ 1 59
4.5.2 LowT on the Quantum Paramagnetic Side,1 < 0, T ¿ |1| 65
4.5.3 Continuum HighT , T À |1| 69
4.5.4 Summary 75

4.6 Applications and Extensions 77

5 Quantum Rotor Models: Large-N Limit 78
5.1 Limiting Cases 79

5.1.1 Strong Coupling,̃gÀ 1 80
5.1.2 Weak Coupling,̃g¿ 1 82

5.2 Continuum Theory and Large-N Limit 83
5.3 Zero Temperature 85

5.3.1 Quantum Paramagnet,g > gc 86
5.3.2 Critical Point,g = gc 87
5.3.3 Magnetically Ordered Ground State,g < gc 89

5.4 Nonzero Temperatures 91
5.4.1 LowT on the Quantum Paramagnetic Side,g > gc, T ¿ 1+ 96
5.4.2 HighT , T À 1+,1− 97
5.4.3 LowT on the Magnetically Ordered Side,g < gc, T ¿ 1− 97

5.5 Applications and Extensions 99

6 Thed = 1, O(N ≥ 3) Rotor Models 101
6.1 Scaling Analysis at Zero Temperature 103
6.2 Low-Temperature Limit of Continuum Theory,T ¿ 1+ 104
6.3 High-Temperature Limit of Continuum Theory,1+ ¿ T ¿ J 110

6.3.1 Field-Theoretic Renormalization Group 112
6.3.2 Computation ofχu 115
6.3.3 Dynamics 116

6.4 Summary 121
6.5 Applications and Extensions 121

7 Thed = 2, O(N ≥ 3) Rotor Models 123
7.1 LowT on the Magnetically Ordered Side,T ¿ ρs 125

7.1.1 Computation ofξc 126
7.1.2 Computation ofτϕ 129
7.1.3 Structure of Correlations 131

7.2 Dynamics of the Quantum Paramagnetic and High-T Regions 134
7.2.1 Zero Temperature 136
7.2.2 Nonzero Temperatures 140

7.3 Summary 143
7.4 Applications and Extensions 144

8 Physics Close to and above the Upper-Critical Dimension 145
8.1 Zero Temperature 147

8.1.1 Perturbation Theory 147



P1: GKW/UKS P2: GKW/UKS QC: GKW

CB196-FM July 31, 1999 15:48

Contents ix

8.1.2 Tricritical Crossovers 149
8.1.3 Field-Theoretic Renormalization Group 150

8.2 Statics at Nonzero Temperatures 151
8.2.1 d < 3 153
8.2.2 d > 3 157

8.3 Order Parameter Dynamics ind = 2 159
8.4 Applications and Extensions 165

9 Transport in d = 2 168
9.1 Perturbation Theory 172

9.1.1 σI 175
9.1.2 σI I 176

9.2 Collisionless Transport Equations 176
9.3 Collision-Dominated Transport 180

9.3.1 ε Expansion 180
9.3.2 Large-N Limit 185

9.4 Physical Interpretation 188
9.5 Applications and Extensions 189

Part III: Other Models 191

10 Boson Hubbard Model 193
10.1 Mean-Field Theory 195
10.2 Continuum Quantum Field Theories 198
10.3 Applications and Extensions 201

11 Dilute Fermi and Bose Gases 203
11.1 The QuantumX X Model 205
11.2 The Dilute Spinless Fermi Gas 207

11.2.1 Dilute Classical Gas,T ¿ |µ|, µ < 0 209
11.2.2 Fermi Liquid,kBT ¿ µ, µ > 0 210
11.2.3 High-T Limit, T À |µ| 213

11.3 The Dilute Bose Gas 214
11.3.1 d < 2 216
11.3.2 d = 3 218

11.4 Correlators ofZB in d = 1 222
11.4.1 Dilute Classical Gas,T ¿ |µ|, µ < 0 223
11.4.2 Tomonaga–Luttinger Liquid,T ¿ µ, µ > 0 225
11.4.3 High-T Limit, T À |µ| 226
11.4.4 Summary 227

11.5 Applications and Extensions 228

12 Phase Transitions of Fermi Liquids 229
12.1 Effective Field Theory 230
12.2 Finite-Temperature Crossovers 234
12.3 Applications and Extensions 238



P1: GKW/UKS P2: GKW/UKS QC: GKW

CB196-FM July 31, 1999 15:48

x Contents

13 Heisenberg Spins: Ferromagnets and Antiferromagnets 240
13.1 Coherent State Path Integral 240
13.2 Quantized Ferromagnets 245
13.3 Antiferromagnets 250

13.3.1 Collinear Order 251
13.3.2 Noncollinear Ordering and Deconfined Spinons 260

13.4 Partial Polarization and Canted States 265
13.4.1 Quantum Paramagnet 267
13.4.2 Quantized Ferromagnets 268
13.4.3 Canted and N´eel States 268
13.4.4 Zero Temperature Critical Properties 270

13.5 Applications and Extensions 272

14 Spin Chains: Bosonization 274
14.1 TheX X Chain Revisited: Bosonization 275
14.2 Phases ofH12 283

14.2.1 Sine–Gordon Model 286
14.2.2 Tomonaga–Luttinger Liquid 287
14.2.3 Spin-Peierls Order 288
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1

Basic Concepts

1.1 What Is a Quantum Phase Transition?

Consider a Hamiltonian,H(g), whose degrees of freedom reside on the sites of a lattice, and
which varies as a function of a dimensionless couplingg. Let us follow the evolution of the
ground state energy ofH(g) as a function ofg. For the case of a finite lattice, this ground
state energy will generically be a smooth, analytic function ofg. The main possibility
of an exception comes from the case wheng couples only to a conserved quantity (i.e.,
H(g) = H0 + gH1, where H0 and H1 commute). This means thatH0 and H1 can be
simultaneously diagonalized and so the eigenfunctions are independent ofg even though
the eigenvalues vary withg; then there can be a level-crossing where an excited level
becomes the ground state atg = gc (say), creating a point of nonanalyticity of the ground
state energy as a function ofg (see Fig. 1.1). The possibilities for aninfinitelattice are richer.
An avoided level-crossing between the ground and an excited state in a finite lattice could
become progressively sharper as the lattice size increases, leading to a nonanalyticity at
g= gc in the infinite lattice limit. We shall identify any point of nonanalyticity in the ground
state energy of the infinite lattice system as a quantum phase transition: The nonanalyticity
could be either the limiting case of an avoided level-crossing or an actual level-crossing.
The first kind is more common, but we shall also discuss transitions of the second kind in
Chapters 11 and 13. The phase transition is usually accompanied by a qualitative change in
the nature of the correlations in the ground state, and describing this change shall clearly
be one of our major interests.

Actually our focus shall be on a limited class of quantum phase transitions – those that
aresecond order. Loosely speaking, these are transitions at which the characteristic energy
scale of fluctuations above the ground state vanishes asg approachesgc. Let the energy
1 represent a scale characterizing some significant spectral density of fluctuations at zero
temperature (T) for g 6= gc. Thus1 could be the energy of the lowest excitation above the
ground state, if this is nonzero (i.e., there is an energy gap1), or if there are excitations at
arbitrarily low energies in the infinite lattice limit (i.e., the energy spectrum isgapless),1
is the scale at which there is a qualitative change in the nature of the frequency spectrum
from its lowest frequency to its higher frequency behavior. In most cases, we will find that
asg approachesgc,1 vanishes as

1 ∼ J|g− gc|zν (1.1)

(exceptions to this behavior appear in Section 14.2.6). HereJ is the energy scale of a
characteristic microscopic coupling, andzν is acritical exponent. The value ofzν is usually

3
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Figure 1.1. Low eigenvalues,E, of a HamiltonianH(g) on a finite lattice, as a function
of some dimensionless couplingg. For the case whereH(g) = H0 + gH1, whereH0
andH1 commute and are independent ofg, there can be an actual level-crossing, as in
(a). More generally, however, there is an “avoided level-crossing,” as in (b).

universal, that is, it is independent of most of the microscopic details of the Hamiltonian
H(g) (we shall have much more to say about the concept of universality below, and in the
following chapters). The behavior (1.1) holds both forg > gc and forg < gc with the same
value of the exponentzν, but with different nonuniversal constants of proportionality. We
shall sometimes use the symbol1+ (1−) to represent the characteristic energy scale for
g > gc (g < gc).

In addition to a vanishing energy scale, second-order quantum phase transitions invariably
have a diverging characteristic length scaleξ : This could be the length scale determining
the exponential decay of equal-time correlations in the ground state or the length scale at
which some characteristic crossover occurs to the correlations at the longest distances. This
length diverges as

ξ−1 ∼ 3|g− gc|ν, (1.2)

whereν is a critical exponent, and3 is an inverse length scale (a “momentum cutoff”)
of order the inverse lattice spacing. The ratio of the exponents in (1.1) and (1.2) isz, the
dynamic critical exponent: The characteristic energy scale vanishes as thezth power of the
characteristic inverse length scale

1 ∼ ξ−z. (1.3)

It is important to notice that the discussion above refers to singularities in theground
stateof the system. So strictly speaking, quantum phase transitions occur only at zero
temperature,T = 0. Because all experiments are necessarily at some nonzero, though
possibly very small, temperature, a central task of the theory of quantum phase transitions
is to describe the consequences of thisT = 0 singularity on physical properties atT > 0.
It turns out that working outward from the quantum critical point atg = gc andT = 0 is a
powerful way of understanding and describing the thermodynamic and dynamic properties
of numerous systems over a broad range of values of|g− gc| andT . Indeed, it is not even
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necessary that the system of interest ever have its microscopic couplings reach a value such
that g = gc: It can still be very useful to argue that there is a quantum critical point at
a physically inaccessible couplingg = gc and to develop a description in the deviation
|g− gc|. It is one of the purposes of this book to describe the physical perspective that such
an approach offers and to contrast it from more conventional expansions about very weak
(sayg→ 0) or very strong couplings (sayg→∞).

1.2 Quantum Versus Classical Phase Transitions

There are two important possibilities for theT > 0 phase diagram of a system near a quantum
critical point. These are shown in Fig. 1.2, and we will meet examples of both kinds in this
book. In the first, shown in Fig. 1.2a, the thermodynamic singularity is present only at
T = 0, and allT > 0 properties are analytic as a function ofg nearg = gc. In the second,
shown in Fig. 1.2b, there is a line ofT > 0 second-order phase transitions (this is a line at
which the thermodynamic free energy is not analytic) that terminates at theT = 0 quantum
critical point atg = gc. In the vicinity of such a line, we will find that the typical frequency
at which the important long distance degrees of freedom fluctuate,ωtyp, satisfies

h̄ωtyp¿ kBT. (1.4)

Under these conditions, it will be seen that a purelyclassicaldescription can be applied
to these important degrees of freedom – this classical description works in the shaded
region of Fig. 1.2b. Consequently, the ultimate critical singularity along the line ofT > 0
phase transitions in Fig. 1.2b is described by the theory of second-order phase transitions
in classical systems. This theory was developed thoroughly in the past three decades and

g

T

0

T

0

gc

gc g

(a)

(b)

Figure 1.2. Two possible phase diagrams of system near a quantum phase transition.
In both cases there is a quantum critical point atg = gc andT = 0. In (b), there is a
line of T > 0 second-order phase transitions terminating at the quantum critical point.
The theory of phase transitions in classical systems driven by thermal fluctuations can
be applied with the shaded region of (b).
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has been explained in many popular reviews and books [342, 65, 268, 196, 588]. We shall
assume here that the reader has some familiarity with at least the basic concepts of this
classical theory and will occasionally refer to some of these sources for specific details.
Notice that the shaded region of classical behavior in Fig. 1.2b lies within the wider window
of the phase diagram, with moderate values of|g − gc| andT , which we asserted above
should be described as an expansion about the quantum critical point atg = gc andT = 0.
So our study of quantum phase transitions will also apply to the shaded region of Fig. 1.2b,
where it will yield information complementary to that available by directly thinking of the
T > 0 phase transition in terms of purely classical models.

We note that phase transitions in classical models are driven only by thermal fluctuations,
as classical systems usually freeze into a fluctuationless ground state atT = 0. In contrast,
quantum systems have fluctuations driven by the Heisenberg uncertainty principle even in
the ground state, and these can drive interesting phase transitions atT = 0. TheT > 0
region in the vicinity of a quantum critical point therefore offers a fascinating interplay of
effects driven by quantum and thermal fluctuations; sometimes, as in the shaded region of
Fig. 1.2b, we can find some dominant, effective degrees of freedom whose fluctuations are
purely classical and thermal, and then the classical theory will apply. However, as already
noted, our attention will not be limited to such regions, and we shall be interested in a
broader section of the phase diagram.

1.3 Experimental Examples

To make the concepts of the previous sections less abstract, let us mention some recent ex-
perimental studies of second-order quantum phase transitions. All of the following examples
will also be discussed further in this book.

• The low-lying magnetic excitations of the insulator LiHoF4 consist of fluctuations
of the Ho ions between two spin states that are aligned parallel and antiparallel to a
particular crystalline axis. These states can be represented by a two-state “Ising” spin
variable on each Ho ion. AtT = 0, the magnetic dipolar interactions between the Ho
ions cause all the Ising spins to align in the same orientation, and so the ground state is
a ferromagnet. Bitko, Rosenbaum, and Aeppli [56] placed this material in a magnetic
field transverse to the magnetic axis. Such a field induces quantum tunneling between
the two states of each Ho ion, and a sufficiently strong tunneling rate can eventually
destroy the long-range magnetic order. Such a quantum phase transition was indeed
observed [56], with the ferromagnetic moment vanishing continuously at a quantum
critical point. Note that such a transition can, in principle, occur precisely atT = 0,
when it is driven entirely by quantum fluctuations. We shall call theT = 0 state
without magnetic order aquantum paramagnet. However, we can also destroy the
magnetic order at a fixed transverse magnetic field (possibly zero), simply by raising
the temperature, enabling the material to undergo a conventional Curie transition to
a high-temperature magnetically disordered state. Among the objectives of this book
is to provide a description of the intricate crossover between the zero-temperature
quantum transition and the finite temperature transition driven partially by thermal
fluctuations; we shall also delineate the important differences between theT = 0
quantum paramagnet and the high-temperature “thermal paramagnet;” see Chapters 5,
7, and 8.
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• The heavy fermion material CeCu6−xAux [439, 514, 555, 477] has a magnetically
ordered ground state, with the magnetic moments on the Ce ions arranged in a spin
density wave with an incommensurate period (this simply means that the expectation
value of the spin operator oscillates in a wavelike manner with a period that is not
a rational number times a period of the crystalline lattice). This order is present at
larger values of the dopingx. By decreasing the value ofx, or by placing the crystal
under pressure, it is possible to destroy the magnetic order in a second-order quantum
phase transition. The ground state then becomes a Fermi liquid with a rather large
effective mass for the fermionic quasiparticles. This transition will be discussed in
Chapter 12.

• The two-dimensional electron gas in semiconductor heterostructures has a very rich
phase diagram with a large number of quantum phase transitions. Let us describe
a particular class of transitions that will be relevant to the theoretical development
in this book. As is well known, the energy spectrum of electrons moving in two
dimensions in the presence of a perpendicular magnetic field splits into discrete,
equally spaced energy levels (Landau levels), with each level having the same fixed
macroscopic degeneracy. Consider a two-dimensional electron gas in a magnetic field
at density such that the lowest Landau level is precisely filled (filling factorν = 1).
The electronic spins are then fully polarized in the direction of the field, and the ground
state is a fully polarized ferromagnet. Actually, this ferromagnetic order is induced
more by the ferromagnetic exchange interactions between the electrons than by the
Zeeman coupling to the external field. Now imagine bringing two such ferromagnetic
layers close to each other [410, 401, 474, 402]. For large layer spacing, the two
layers will have their ferromagnetic moments both aligned in the direction of the
applied field. For smaller spacings, there turns out to be a substantialantiferromagnetic
exchange between the two layers, so that the ground state eventually becomes a
spin singlet, created by a “bonding” of electrons in opposite layers into spin singlet
pairs [584, 128, 129]. The transition from a fully polarized ferromagnet to a spin
singlet state actually happens through two second-order quantum phase transitions
via an intermediate state with “canted” antiferromagnetic order (this shall be discussed
in Section 13.4).

• The low-energy spin fluctuations of the insulator La2CuO4 consist of quantum fluc-
tuations in the orientations ofS= 1/2 spins located on the sites of a square lattice.
Each spin represents the magnetic states of thed-orbitals on a Cu ion. There is an
antiferromagnetic exchange coupling between the spins that prefers an antiparallel
orientation for neighboring spins, and the resulting Hamiltonian is the square lattice
S = 1/2 Heisenberg antiferromagnet (the modifier “Heisenberg” indicates that the
model has the fullSU(2) symmetry of rotations in spin space). The ground state of
this model is a “Néel” state, in which the spins are polarized in opposite orientations
on the two checkerboard sublattices of the square lattice. However, theoretically, we
can consider a more general model with both first- and second-neighbor antiferro-
magnetic exchange. As we shall discuss in Chapter 13, such a model can undergo
a quantum phase transition in which the N´eel order is destroyed, and the ground
state becomes a quantum paramagnet with a gap to all spin excitations. While such a
phase transition has not been observed experimentally so far, it still pays to consider
the physics of this quantum critical point and to understand the finite-temperature
crossovers in its vicinity. These crossovers also influence the behavior of the nearest
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neighbor model found in La2CuO4, and they turn out to be a useful way of interpreting
its magnetic properties at intermediate temperatures; see Chapters 5, 7, and 13.

1.4 Theoretical Models

The physics underlying the quantum transitions discussed above is quite complex and,
in many cases, not completely understood. Our strategy in this book will be to thoroughly
analyze the physical properties of quantum phase transitions in two simple theoretical model
systems in Part II: the quantum Ising and rotor models; fortunately, these simple models
also have some direct experimental applications and these will be noted at numerous points
in Part II. Part III will then survey some important quantum phase transitions in other
models of physical interest. Our motivation in dividing the discussion in this manner is
mainly pedagogical: The quantum transitions of the Ising/rotor models have an essential
simplicity, but their behavior is rich enough to display most of the basic phenomena we
wish to explore. It will therefore pay to first meet the central physical ideas in this simple
context.

We will introduce the quantum Ising and rotor models in turn, discussing the nature of
the quantum phase transitions in them.

1.4.1 Quantum Ising Model

We begin by writing down the Hamiltonian of the quantum Ising model. It is

HI = −Jg
∑

i

σ̂ x
i − J

∑
〈i j 〉

σ̂ z
i σ̂

z
j . (1.5)

As in the general notation introduced above,J > 0 is an exchange constant, which sets the
microscopic energy scale, andg > 0 is a dimensionless coupling, which will be used to tune
HI across a quantum phase transition. The quantum degrees of freedom are represented by
operators ˆσ z,x

i , which reside on the sites,i , of a hypercubic lattice ind dimensions; the sum
〈i j 〉 is over pairs of nearest neighbor sitesi , j . Theσ̂ x,z

i are the familiar Pauli matrices; the
matrices on different sitesi act on different spin states, and so matrices withi 6= j commute
with each other. In the basis where the ˆσ z

i are diagonal, these matrices have the well-known
form

σ̂ z =
(

1 0
0 −1

)
; σ̂ y =

(
0 −i
i 0

)
; σ̂ x =

(
0 1
1 0

)
(1.6)

on each sitei . We will denote the eigenvalues of ˆσ z
i simply by σ z

i , and soσ z
i takes the

values±1. We identify the two states with eigenvaluesσ z
i = +1,−1 as the two possible

orientations of an “Ising spin,” which can oriented up or down in| ↑〉i , | ↓〉i . Consequently
atg = 0, whenHI involves only the ˆσ z

i , HI will be diagonal in the basis of eigenvalues of ˆσ z
i ,

and it reduces simply to the familiar classical Ising model. However, the ˆσ x
i are off-diagonal

in the basis of these states, and therefore they induce quantum-mechanical tunneling events
that flip the orientation of the Ising spin on a site. The physical significance of the two terms
in HI should be clear in the context of our earlier discussion in Section 1.3 for LiHoF4.
The term proportional toJ is the magnetic interaction between the spins, which prefers
their global ferromagnetic alignment; the actual interaction in LiHoF4 has a long-range
dipolar nature, but we have simplified this here to a nearest neighbor interaction. The term
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proportional toJg is the external transverse magnetic field, which disrupts the magnetic
order.

Let us make these qualitative considerations somewhat more precise. The ground state
of HI can depend only upon the value of the dimensionless couplingg, and so it pays to
consider the two opposing limitsgÀ 1 andg¿ 1.

First considergÀ 1. In this case the first term in (1.5) dominates, and, to leading order
in 1/g, the ground state is simply

|0〉 =
∏

i

| →〉i , (1.7)

where

| →〉i = (| ↑〉i + | ↓〉i )/
√

2,

| ←〉i = (| ↑〉i − | ↓〉i )/
√

2
(1.8)

are the two eigenstates of ˆσ x
i with eigenvalues±1. The values ofσ z

i on different sites are
totally uncorrelated in the state (1.7), and so〈0|σ̂ z

i σ̂
z
j |0〉 = δi j . Perturbative corrections in

1/g will build in correlations inσ z that increase in range at each order in 1/g; for g large
enough these correlations are expected to remain short-ranged, and we expect in general
that 〈

0
∣∣σ̂ z

i σ̂
z
j

∣∣0〉 ∼ e−|xi−xj |/ξ (1.9)

for large|xi − xj |, wherexi is the spatial coordinate of sitei , |0〉 is the exact ground state
for largeg, andξ is the “correlation length” introduced above (1.2).

Next we consider the opposing limitg ¿ 1. We will find that the nature of the ground
state is qualitatively different from the large-g limit above, and we shall use this to argue
that there must be a quantum phase transition between the two limiting cases at a critical
g = gc of order unity. Forg ¿ 1, the second term in (1.5) coupling neighboring sites
dominates; atg = 0 the spins are either all up or all down (in eigenstates ofσ z):

|↑〉 =
∏

i

| ↑〉i or |↓〉 =
∏

i

|↓〉i . (1.10)

Turning on a smallg will mix in a small fraction of spins of the opposite orientation, but in
an infinite system the degeneracy will survive at any finite order in a perturbation theory in
g. This is because there is an exact globalZ2 symmetry transformation (generated by the
unitary operator

∏
i σ

x
i ), which maps the two ground states into each other, under which

HI remains invariant:

σ̂ z
i →−σ̂ z

i , σ̂ x
i → σ̂ x

i , (1.11)

and there is no tunneling matrix element between the majority up and down spin sectors
of the infinite system at any finite order ing. The mathematically alert reader will note
that establishing the degeneracy to all orders ing, is not the same thing as establishing its
existence for any small nonzerog, but more sophisticated considerations show that this is
indeed the case. A thermodynamic system will always choose one or the other of the states
as its ground states (which may be preferred by some infinitesimal external perturbation),
and this is commonly referred to as a “spontaneous breaking” of theZ2 symmetry. As in
the large-g limit, we can characterize the ground states by the behavior of correlations of
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σ̂ z
i ; the nature of the states (1.10) and the small-g perturbation theory suggest that

lim
|xi−xj |→∞

〈
0
∣∣σ̂ z

i σ̂
z
j

∣∣0〉 = N2
0 , (1.12)

where|0〉 is either of the ground states obtained from| ↑〉 or | ↓〉 by perturbation theory in
g, andN0 6= 0 is the “spontaneous magnetization” of the ground state. This identification
is made clearer by the simpler statement〈

0
∣∣σ̂ z

i

∣∣0〉 = ±N0, (1.13)

which also follows from the perturbation theory ing. We haveN0 = 1 for g = 0, but
quantum fluctuations at smallg reduceN0 to a smaller, but nonzero, value.

Now we make the simple observation that it is not possible for states that obey (1.9) and
(1.12) to transform into each other analytically as a function ofg. There must be a critical
valueg = gc at which the large|xi − xj | limit of the two-point correlator changes from
(1.9) to (1.12 ) – this is the position of the quantum phase transition, which shall be the
focus of intensive study in this book. Our arguments so far do not exclude the possibility
that there could be more than one critical point, but this is known not to happen forHI ,
and we will assume here that there is only one critical point atg = gc. For g > gc the
ground state is, as noted earlier, aquantum paramagnet, and (1.9) is obeyed. We will find
that asg approachesgc from above, the correlation length,ξ , diverges as in (1.2). Precisely
at g = gc, neither (1.9) nor (1.12) is obeyed, and we find instead a power-law dependence
on |xi − xj | at large distances. The result (1.12) holds for allg < gc, when the ground state
is magnetically ordered.The spontaneous magnetization of the ground state,N0, vanishes
as a power law asg approachesgc from below.

Finally, we make a comment about the excited states ofHI . In a finite lattice, there is
necessarily a nonzero energy separating the ground state and the first excited state. However,
this energy spacing can either remain finite or approach zero in the infinite lattice limit, the
two cases being identified as having a gapped or gapless energy spectrum respectively. We
will find that there is an energy gap1 that is nonzero for allg 6= gc, but that it vanishes
upon approachinggc as in (1.1), producing a gapless spectrum atg = gc.

1.4.2 Quantum Rotor Model

We turn to the somewhat less familiar quantum rotor models. Elementary quantum rotors
do not exist in nature; rather, each quantum rotor is an effective quantum degree of freedom
for the low energy states of a small number of closely coupled electrons. We will first define
the quantum mechanics of a single rotor and then briefly motivate how it might represent
some physically interesting systems. More details on this physical mapping will appear in
Section 5.1.1.1 and Chapters 10, 13.

Each rotor can be visualized as a particle constrained to move on the surface of a (fic-
titious) (N > 1)-dimensional sphere. The orientation of each rotor is represented by an
N-component unit vector̂ni which satisfies

n̂2 = 1. (1.14)

The caret on̂ni reminds us that the orientation of the rotor is a quantum mechanical operator,
while i represents the site on which the rotor resides; we will shortly consider an infinite
number of such rotors residing on the sites of ad-dimensional lattice. Each rotor has a
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momentump̂i , and the constraint (1.14) implies that this must be tangent to the surface of
theN-dimensional sphere. The rotor position and momentum satisfy the usual commutation
relations

[n̂α, p̂β ] = i δαβ (1.15)

on each sitei ; hereα, β = 1 . . . N. (Here, and in the remainder of the book, we will always
measure time in units in which

h̄ = 1, (1.16)

unless stated explicitly otherwise. This is also a good point to note that we will also set
Boltzmann’s constant

kB = 1 (1.17)

by absorbing it into the units of temperature,T .) We will actually find it more convenient
to work with theN(N − 1)/2 components of the rotor angular momentum

L̂αβ = n̂α p̂β − n̂β p̂α. (1.18)

These operators are the generators of the group of rotation inN dimensions, denoted O(N).
Their commutation relations follow straightforwardly from (1.15) and (1.18). The case
N = 3 will be of particular interest to us: For this we defineL̂α = (1/2)εαβγ Lβγ (where
εαβγ is a totally antisymmetric tensor withε123 = 1), and then the commutation relation
between the operators on each site are

[ L̂α, L̂β ] = i εαβγ L̂γ ,

[ L̂α, n̂β ] = i εαβγ n̂γ , (1.19)

[n̂α, n̂β ] = 0;
the operators with different site labels all commute.

The dynamics of each rotor is governed simply by its kinetic energy term; interesting
effects will arise from potential energy terms that couple the rotors together, and these will
be considered momentarily. Each rotor has the kinetic energy

HK = Jg̃

2
L̂

2
, (1.20)

where 1/Jg̃ is the rotor moment of inertia (we have put a tilde overg as we wish to reserve
g for a different coupling to be introduced below). The HamiltonianHK can be readily
diagonalized for general values ofN by well-known group theoretical methods. We quote
the results for the physically important cases ofN = 2 and 3. ForN = 2 the eigenvalues
are

Jg̃`2/2 ` = 0, 1, 2, . . . ; degeneracy= 2− δ`,0. (1.21)

Note that there is a nondegenerate ground state with` = 0, while all excited states are two-
fold degenerate, corresponding to a left- or right-moving rotor. In physical applications,
these states can be visualized as the low-lying energy levels of a superconducting quantum
dot: ` measures the deviation in the number of Cooper pairs on the dot from the number
found in the ground state, andJg̃ is a measure of the inverse self-capacitance of the dot.
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More details on this physical application ofN = 2 quantum rotors will appear in Chapter 10.
For N = 3, the eigenvalues ofHK are

Jg̃`(`+ 1)/2 ` = 0, 1, 2, . . . ; degeneracy= 2`+ 1, (1.22)

corresponding to the familiar angular momentum states in three dimensions. These states
can be viewed as representing the eigenstates of an even number of antiferromagnetically
coupled Heisenberg spins. The ground state is a spin singlet, as can be expected from an
antiferromagnetic coupling that prefers spins in opposite orientations. This mapping will be
discussed more explicitly in Section 5.1.1.1 and in Chapter 13, where will see that there is a
general and powerful correspondence between quantum antiferromagnets andN = 3 rotors.
The O(3) quantum rotors also describe the double layer quantum Hall systems discussed
in Section 1.3 [128, 129].

We are ready to write down the full quantum rotor Hamiltonian, which shall be the focus
of intensive study in Part II. It is

HR = Jg̃

2

∑
i

L̂
2
i − J

∑
〈i j 〉

n̂i · n̂ j . (1.23)

We have augmented the sum of kinetic energies of each site with a coupling,J, between
rotor orientations on neighboring sites. This coupling energy is minimized by the simple
“magnetically ordered” state in which all the rotors are oriented in the same direction.
In contrast, the rotor kinetic energy is minimized when the orientation of the rotor is
maximally uncertain (by the uncertainty principle), and so the first term inHR prefers a
quantum paramagnetic state in which the rotors do not have a definite orientation (i.e.,
〈n〉 = 0). Thus the roles of the two terms inHR closely parallel those of the terms in the
Ising modelHI . As in Section 1.4.1, for̃g À 1, when the kinetic energy dominates, we
expect a quantum paramagnet in which, following (1.9),

〈0|n̂i · n̂ j |0〉 ∼ e−|xi−xj |/ξ . (1.24)

Similarly, for g̃¿ 1, when the coupling term dominates, we expect a magnetically ordered
state in which, as in (1.12),

lim
|xi−xj |→∞

〈0|n̂i · n̂ j |0〉 = N2
0 . (1.25)

Finally, we can anticipate a second-order quantum phase transition between the two phases
at g̃ = g̃c, and the behavior ofN0 andξ upon approaching this point will be similar to
that in the Ising case. These expectations turn out to be correct ford > 1, but we will see
that they need some modifications ford = 1. In one dimension, we will show thatg̃c = 0
for N ≥ 3, and so the ground state is a quantum paramagnetic state for all nonzerog̃. The
caseN = 2, d = 1 is special: There is a transition at a finiteg̃c, but the divergence of
the correlation length does not obey (1.2) and the long-distance behavior of the correlation
function g̃ < g̃c differs from (1.25). This case will not be considered until Section 14.3 in
Part III.


